

Spectrality of a measure consisting of two line segments

Sha Wu
Join work with Mihalis Kolountzakis
Visiting University of Crete

2025.09 Xidian University, Xi'an, Shaanxi

Outline

- Background
- Spectral problem
 - Symmetric additive measures
 - Main results

Classical example: $L^2([0,1])$ has an orthogonal basis $\{e^{2\pi i\lambda \cdot x}\}_{\lambda\in\mathbb{Z}}$,

i.e., for any $f \in L^2([0,1])$

$$f(x) = \sum_{\lambda \in \mathbb{Z}} c_{\lambda}(f) e_{\lambda}(x)$$
, with $e_{\lambda}(x) = e^{2\pi i \lambda \cdot x}$,

where $c_{\lambda}(f) = \int_0^1 f(x)e^{-2\pi i\lambda \cdot x} dx$.

Classical example: $L^2([0,1])$ has an orthogonal basis $\{e^{2\pi i\lambda \cdot x}\}_{\lambda\in\mathbb{Z}}$,

i.e., for any $f \in L^2([0,1])$

$$f(x) = \sum_{\lambda \in \mathbb{Z}} c_{\lambda}(f) e_{\lambda}(x)$$
, with $e_{\lambda}(x) = e^{2\pi i \lambda \cdot x}$,

where $c_{\lambda}(f) = \int_0^1 f(x)e^{-2\pi i\lambda \cdot x} dx$.

Basic problem: Whether $\exists \Lambda \text{ s.t. } E_{\Lambda} := \left\{e^{2\pi i \lambda \cdot x}\right\}_{\lambda \in \Lambda}$ forms an orthogonal basis of $L^2(\mu)$?

Classical example: $L^2([0,1])$ has an orthogonal basis $\{e^{2\pi i\lambda \cdot x}\}_{\lambda \in \mathbb{Z}}$,

i.e., for any $f \in L^2([0,1])$

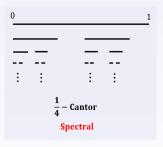
$$f(x) = \sum_{\lambda \in \mathbb{Z}} c_{\lambda}(f) e_{\lambda}(x)$$
, with $e_{\lambda}(x) = e^{2\pi i \lambda \cdot x}$,

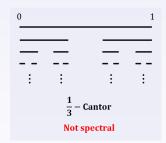
where $c_{\lambda}(f) = \int_0^1 f(x)e^{-2\pi i\lambda \cdot x} dx$.

Basic problem: Whether $\exists \Lambda \text{ s.t. } E_{\Lambda} := \left\{e^{2\pi i \lambda \cdot x}\right\}_{\lambda \in \Lambda}$ forms an orthogonal basis of $L^2(\mu)$?

Definition 1. Let μ be a Borel probability measure on \mathbb{R}^d . The measure μ is called spectral if there exists a countable set $\Lambda \subset \mathbb{R}^d$ such that E_{Λ} forms an orthogonal basis for $L^2(\mu)$. In this case, we call Λ a spectrum of μ .

Jorgensen and Pedersen(1998) First singular spectral measure





$$\Lambda = \left\{ \sum_{j=0}^{k} 4^{j} a_{j} : a_{j} \in \{0, 1\}, \ k \ge 1 \right\}$$

He, Lai and Lau(2013) Spectral measure μ must be of pure type.

- Discrete (finite support), or
- Absolutely continuous, or
- Singularly continuous.

Definition 2. We say Ω is a spectral set if spectral measure μ is the Lebesgue measure restricted on the set Ω . Usually, we take the measure of Ω to be 1.

Definition 2. We say Ω is a spectral set if spectral measure μ is the Lebesgue measure restricted on the set Ω . Usually, we take the measure of Ω to be 1.

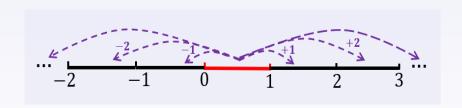
Definition 3. The set Ω is said to tile \mathbb{R}^d by translations if there exists a discrete set $L \subset \mathbb{R}^d$ such that

$$\bigcup_{l \in L} (\Omega + l) = \mathbb{R}^d \text{ and } m((\Omega + l_1) \cap (\Omega + l_2)) = 0 \text{ for all } l_1 \neq l_2 \in L,$$

where $m(\cdot)$ denotes the Lebesgue measure.

For example

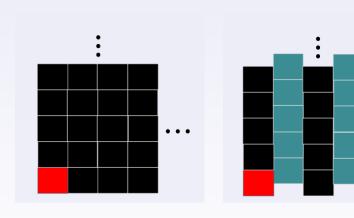
•
$$\Omega = [0, 1]$$



$$\Omega + T = \mathbb{R}$$

where
$$T = \Lambda = \mathbb{Z}$$

•
$$\Omega = [0,1]^2$$



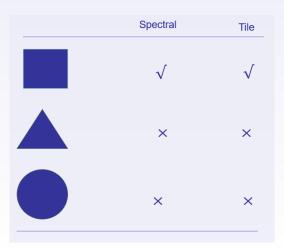
$$\Omega + T_1 = \mathbb{R}^2$$

$$\Omega + T_2 = \mathbb{R}^2$$

where
$$T_1 = \Lambda_1 = \mathbb{Z}^2$$
 and $T_2 = \Lambda_2 = \begin{pmatrix} 2\mathbb{Z} \\ \mathbb{Z} \end{pmatrix} \bigcup \begin{pmatrix} 2\mathbb{Z} + 1 \\ \frac{1}{2} + \mathbb{Z} \end{pmatrix}$

Fuglede Conjecture (1974): $\Omega \subset \mathbb{R}^d$ is a spectral set if and only if it tiles \mathbb{R}^d by translation.

Fuglede Conjecture (1974): $\Omega \subset \mathbb{R}^d$ is a spectral set if and only if it tiles \mathbb{R}^d by translation.



Counterexamples

- $d \ge 3$, non-tiling spectral set
 - $d \ge 5$ (Tao, 2004)
 - d = 3, 4 (Matolcsi, 2004; Kolountzakis and Matolcsi, 2004)

Counterexamples

- $d \geq 3$, non-tiling spectral set
 - $d \ge 5$ (Tao, 2004)
 - d = 3, 4 (Matolcsi, 2004; Kolountzakis and Matolcsi, 2004)
- $d \ge 3$, tiling not-spectral set
 - $d \ge 5$, (Kolountzakis and Matolcsi, 2004)
- \bullet d=3,4, (Farkas and Révész, 2004; Farkas, Matolcsi and Móra, 2005).

• d = 1, 2, conjecture still open in both directions

• d = 1, 2, conjecture still open in both directions

Positive

- Lattice tile (Fuglede 1974)
- Convex body (Lev and Matolcsi 2022)
- Some cyclic group, for example, \mathbb{Z}_{p^n} , $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$, $\mathbb{Z}_p^2 \times \mathbb{Z}_q^2 \cdots$

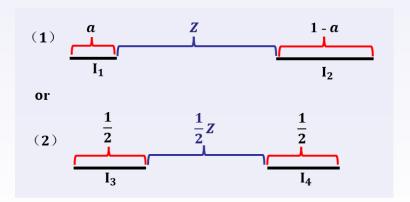
• Fuglede Conjecture holds for an interval.

Question: Does Fuglede Conjecture hold for the union of two intervals?

Th A. [Łaba, 2001] Let $\Omega \subset \mathbb{R}$ be a union of two disjoint intervals. Then Ω has a spectrum \iff it tiles \mathbb{R} by translations.

Th A. [Laba, 2001] Let $\Omega \subset \mathbb{R}$ be a union of two disjoint intervals. Then Ω has a spectrum \iff it tiles \mathbb{R} by translations.

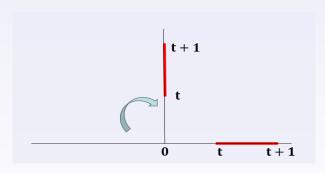
Essentially all that can happen is this:



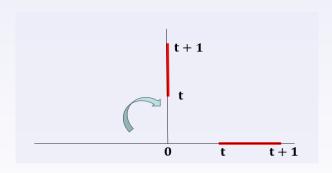
For example
$$\Omega = [-(t+1), -t] \cup [t, t+1] \ (t \ge 0)$$

spectral
$$\iff$$
 tile \iff $t \in \frac{\mathbb{Z}}{2}$

Rotate the left interval to the y-axis. We are seeking a spectrum for singular measure in \mathbb{R}^2 .



Rotate the left interval to the y-axis. We are seeking a spectrum for singular measure in \mathbb{R}^2 .



When is it a spectral measure?

Symmetric additive measures

Definition 4. Let μ be a continuous Borel probability measure on \mathbb{R} . The symmetric additive measure (SAM) ρ on \mathbb{R}^2 is given by

$$\rho = \frac{1}{2}(\mu \times \delta_0 + \delta_0 \times \mu),$$

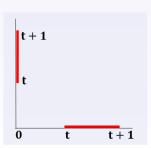
where δ_0 is the Dirac measure at 0. If μ is a Lebesgue measure supported on a unit interval, we call ρ SAML.

Symmetric additive measures

Definition 4. Let μ be a continuous Borel probability measure on \mathbb{R} . The symmetric additive measure (SAM) ρ on \mathbb{R}^2 is given by

$$\rho = \frac{1}{2}(\mu \times \delta_0 + \delta_0 \times \mu),$$

where δ_0 is the Dirac measure at 0. If μ is a Lebesgue measure supported on a unit interval, we call ρ SAML.

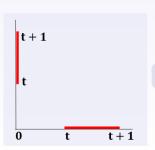


Symmetric additive measures

Definition 4. Let μ be a continuous Borel probability measure on \mathbb{R} . The symmetric additive measure (SAM) ρ on \mathbb{R}^2 is given by

$$\rho = \frac{1}{2}(\mu \times \delta_0 + \delta_0 \times \mu),$$

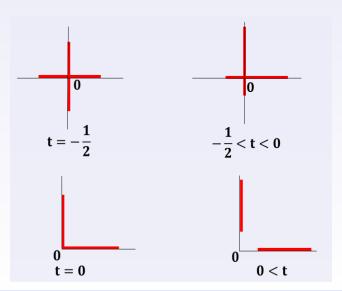
where δ_0 is the Dirac measure at 0. If μ is a Lebesgue measure supported on a unit interval, we call ρ SAML.



When is SAML a spectral measure?

\mathbf{SAML}

By the symmetry, we consider only the cases $t \ge -\frac{1}{2}$.



Th B. [Lai, Liu and Prince (2021); Ai, Lu and Zhou (2023)] Let ρ be SAML, then the following two statements hold:

- (1). If $-\frac{1}{2} < t < 0$ and $2t+1 = \frac{1}{a}$, where a > 1 is a positive integer, then ρ is not spectral.
- (2). If $t \in \mathbb{Q} \setminus \{-\frac{1}{2}\}$, then ρ is a spectral measure $\iff t \in \mathbb{Z}$. In this case, ρ has a unique spectrum of the form

$$\Lambda = \{(\lambda, -\lambda) : \lambda \in \Lambda_0\},\$$

where Λ_0 is the spectrum of the Lebesgue measure supported on $[-t-1,-t]\cup [t,t+1]$.

Our goal is to prove

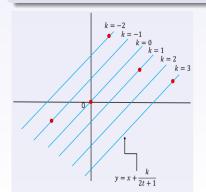
$$\begin{cases} (1). \text{When } -\frac{1}{2} < t < 0, \rho \text{ is not a spectral measure.} \\ (2). \text{When } t \notin \mathbb{Q}, \rho \text{ is not a spectral measure.} \end{cases}$$

Lem 1. Let ρ be SAML. If $t \neq -\frac{1}{2}$ and ρ is spectral with spectrum $0 \in \Lambda \subseteq \mathbb{R}^2$, then for every $\lambda = (\lambda_1, \lambda_2) \in \Lambda$ there exists an integer $k(\lambda)$ such that

$$\lambda_2 - \lambda_1 = \frac{k(\lambda)}{2t+1}.$$

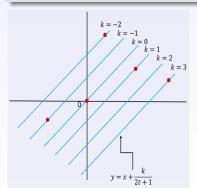
Lem 1. Let ρ be SAML. If $t \neq -\frac{1}{2}$ and ρ is spectral with spectrum $0 \in \Lambda \subseteq \mathbb{R}^2$, then for every $\lambda = (\lambda_1, \lambda_2) \in \Lambda$ there exists an integer $k(\lambda)$ such that

$$\lambda_2 - \lambda_1 = \frac{k(\lambda)}{2t+1}.$$



Lem 1. Let ρ be SAML. If $t \neq -\frac{1}{2}$ and ρ is spectral with spectrum $0 \in \Lambda \subseteq \mathbb{R}^2$, then for every $\lambda = (\lambda_1, \lambda_2) \in \Lambda$ there exists an integer $k(\lambda)$ such that

$$\lambda_2 - \lambda_1 = \frac{k(\lambda)}{2t+1}.$$



Proof:

• For any $\lambda_1 \neq \lambda_2 \in \Lambda$,

$$0 = \langle e^{2\pi i \lambda_1 x}, e^{2\pi i \lambda_2 x} \rangle_{L^2(\rho)}$$
$$= \int e^{2\pi i (\lambda_1 - \lambda_2) x} d\rho = \hat{\rho} (\lambda_2 - \lambda_1)$$

•
$$\Lambda \setminus \{0\} \subset (\Lambda - \Lambda) \setminus \{0\}$$

 $\subset \{x : \hat{\rho}(x) = 0\}$

Proof of Lem 1

• Zeros set of $\hat{\rho}$

$$\{\lambda:\hat{\rho}(\lambda)=0\}=\left\{(\lambda_1,\lambda_2):e^{\pi i(\lambda_1-\lambda_2)(2t+1)}\frac{\sin\pi\lambda_1}{\pi\lambda_1}=-\frac{\sin\pi\lambda_2}{\pi\lambda_2}\right\}$$

• So the exponential factor must be real, for vanishing, which gives

$$\Lambda \subset \left\{ (\lambda_1, \lambda_2) : \ \lambda_2 - \lambda_1 \in \frac{1}{2t+1} \mathbb{Z} \right\}$$

Intersecting case

Th 1. [M. Kolountzakis, S. Wu(2025)] Let ρ be SAML. If $-\frac{1}{2} < t < 0$, then ρ is not spectral.

Intersecting case

Th 1. [M. Kolountzakis, S. Wu(2025)] Let ρ be SAML. If $-\frac{1}{2} < t < 0$, then ρ is not spectral.

Proof: (By contradiction) Suppose $0 \in \Lambda$ is a spectrum.

(1).
$$f(x) \stackrel{L^2}{=} \sum_{\lambda \in \Lambda} \langle f, e_{\lambda} \rangle e_{\lambda}(x)$$
 for any $f \in L^2(\rho)$

Intersecting case

Th 1. [M. Kolountzakis, S. Wu(2025)] Let ρ be SAML. If $-\frac{1}{2} < t < 0$, then ρ is not spectral.

Proof: (By contradiction) Suppose $0 \in \Lambda$ is a spectrum.

(1).
$$f(x) \stackrel{L^2}{=} \sum_{\lambda \in \Lambda} \langle f, e_{\lambda} \rangle e_{\lambda}(x)$$
 for any $f \in L^2(\rho)$

(2).
$$f(x+T) \stackrel{L^2}{=} f(x)$$
, where $T = (2t+1, -2t-1)$ (By Lemma 1)

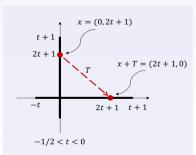
Intersecting case

Th 1. [M. Kolountzakis, S. Wu(2025)] Let ρ be SAML. If $-\frac{1}{2} < t < 0$, then ρ is not spectral.

Proof: (By contradiction) Suppose $0 \in \Lambda$ is a spectrum.

(1).
$$f(x) \stackrel{L^2}{=} \sum_{\lambda \in \Lambda} \langle f, e_{\lambda} \rangle e_{\lambda}(x)$$
 for any $f \in L^2(\rho)$

(2).
$$f(x+T) \stackrel{L^2}{=} f(x)$$
, where $T = (2t+1, -2t-1)$ (By Lemma 1)



(3). Construct a function $f(x) \in L^2(\rho)$ s.t. for all $x \in supp(\rho)$

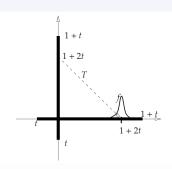
$$\begin{cases} f(x) \stackrel{\textit{Pointwise}}{=} \sum_{\lambda \in \Lambda} \langle f, e_{\lambda} \rangle e_{\lambda}(x) \\ f(x+T) \stackrel{\textit{Pointwise}}{=} f(x) \end{cases}$$

(3). Construct a function $f(x) \in L^2(\rho)$ s.t. for all $x \in supp(\rho)$

$$\begin{cases} f(x) \stackrel{\textit{Pointwise}}{=} \sum_{\lambda \in \Lambda} \langle f, e_{\lambda} \rangle e_{\lambda}(x) \\ f(x+T) \stackrel{\textit{Pointwise}}{=} f(x) \end{cases}$$

- Vertical segment 0 $f(0,y) = 0 \text{ for all } y \in \mathbb{R}$
 - Horizontal segment

$$\begin{cases} f(2t+1,0) = 1\\ smooth\ function\\ support\ close\ to\ (1+2t,0) \end{cases}$$



$$\Longrightarrow \sum_{\lambda \in \Lambda} |\langle f, e_{\lambda} \rangle| < \infty$$
 for all $x \in \mathbb{R}^2$ (from smoothness)

$$\implies 1 = f(2t+1,0) = f(0,2t+1) = 0$$
, contradiction!

Case of irrational t

Th 2. [M. Kolountzakis, S. Wu(2025)] Let ρ be SAML. If $t \notin \mathbb{Q}$, then ρ is not spectral.

Case of irrational t

Th 2. [M. Kolountzakis, S. Wu(2025)] Let ρ be SAML. If $t \notin \mathbb{Q}$, then ρ is not spectral.

Proof: (By contradiction) Suppose $0 \in \Lambda$ is a spectrum.

Case of irrational t

Th 2. [M. Kolountzakis, S. Wu(2025)] Let ρ be SAML. If $t \notin \mathbb{Q}$, then ρ is not spectral.

Proof: (By contradiction) Suppose $0 \in \Lambda$ is a spectrum.

Lem 2. (1). On each line of the form

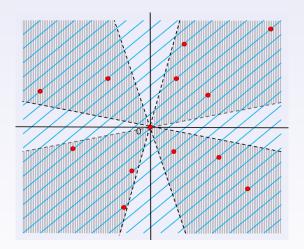
$$y - x = \frac{k}{2t+1}$$
 for some $k \in \mathbb{Z}$,

there is at most one point of Λ .

(2). There is a constant K > 1 such that

$$K^{-1}|\lambda_1| \le |\lambda_2| \le K|\lambda_1|$$

for all $\lambda = (\lambda_1, \lambda_2) \in \Lambda$.



Remark. [Lai, Liu and Prince (2021)] At most one point on any vertical or horizontal line through Λ .

Lem 3. Let Λ_x , Λ_y be the projections of Λ on the x, y - axis. We have

$$2 = \sum_{\lambda \in \Lambda_x} |\widehat{\mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}}|^2(x-\lambda) \quad \text{ and } \quad 2 = \sum_{\lambda \in \Lambda_y} |\widehat{\mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}}|^2(x-\lambda).$$

In this case, we call $|\widehat{\mathbf{1}_{[-\frac{1}{6},\frac{1}{6}]}}|^2 + \Lambda_x$ a tiling of \mathbb{R} at level 2.

Lem 3. Let Λ_x , Λ_y be the projections of Λ on the x, y - axis. We have

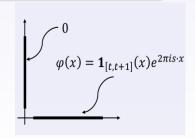
$$2 = \sum_{\lambda \in \Lambda_x} |\widehat{\mathbf{1}_{[-\frac{1}{2}, \frac{1}{2}]}}|^2 (x - \lambda) \quad \text{and} \quad 2 = \sum_{\lambda \in \Lambda_y} |\widehat{\mathbf{1}_{[-\frac{1}{2}, \frac{1}{2}]}}|^2 (x - \lambda).$$

In this case, we call $|\widehat{\mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}}|^2 + \Lambda_x$ a tiling of \mathbb{R} at level 2.

Proof:

•
$$||f||_{L^2(\rho)} = \sum_{\lambda \in \Lambda} \left| \langle f, e_\lambda \rangle_{L^2(\rho)} \right|^2$$

•
$$f(x,y) = \begin{cases} 0, & x = 0 \\ \varphi(x), & y = 0 \end{cases}$$



Lem 4. There are finitely many different gaps among successive points in Λ_x and Λ_y . In this case, we call Λ_x , Λ_y finite complexity.

Lem 4. There are finitely many different gaps among successive points in Λ_x and Λ_y . In this case, we call Λ_x , Λ_y finite complexity.

Proof:

• Only need to consider Λ_x .

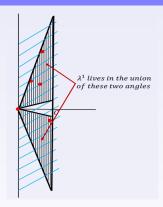
Writing the set $\Lambda_x = \{\lambda_1^n : n \in \mathbb{Z}\}$ with

$$\cdots \le \lambda_1^{-1} \le \lambda_1^0 = 0 \le \lambda_1^1 \le \lambda_1^2 < \cdots$$

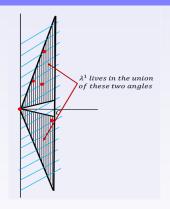
and
$$\Lambda = \{\lambda^n = (\lambda_1^n, \lambda_2^n) : n \in \mathbb{Z}\}$$

To prove the set $\{\lambda_1^{n+1} - \lambda_1^n\}_{n \in \mathbb{Z}}$ finitely many different elements.

- By the tiling property (Lemma 3), there is a constant C such that $\lambda_1^1 < C$
- λ^1 lives in the union of these two angles



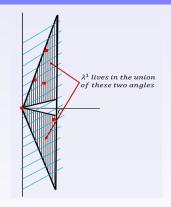
- By the tiling property (Lemma 3), there is a constant C such that $\lambda_1^1 < C$
- λ^1 lives in the union of these two angles



• Translate Λ by $-\lambda^n$, we have

 $\lambda^{n+1} - \lambda^n$ lives again in the union of these two angles

- By the tiling property (Lemma 3), there is a constant C such that $\lambda_1^1 < C$
- λ^1 lives in the union of these two angles



• Translate Λ by $-\lambda^n$, we have

 $\lambda^{n+1} - \lambda^n$ lives again in the union of these two angles

- On each blue line, the zeros of $\hat{\rho}$ are a discrete set
- $\Longrightarrow \{\lambda_1^{n+1} \lambda_1^n\}_{n \in \mathbb{Z}}$ can take only finitely many values.

Th C. [Kolountzakis and Lev(2016)] If

- (1). $f + \Lambda$ is a tiling of \mathbb{R} at some level l.
- (2). Λ has finite complexity and spectral gap.

Then $\Lambda = \Lambda + T$ for some positive $T \in \mathbb{R}$. In other words, Λ is periodic set.

Th C. [Kolountzakis and Lev(2016)] If

- (1). $f + \Lambda$ is a tiling of \mathbb{R} at some level l.
- (2). Λ has finite complexity and spectral gap.

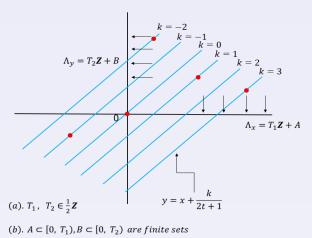
Then $\Lambda = \Lambda + T$ for some positive $T \in \mathbb{R}$. In other words, Λ is periodic set.

Combining Lemmas 3 and 4 with Theorem C, we have

Lem 5. There are positive $T_1, T_2 \in \frac{1}{2}\mathbb{Z}$ and some finite sets $A \subseteq [0, T_1)$ and $B \subseteq [0, T_2)$ such that

$$\Lambda_x = T_1 \mathbb{Z} + A$$
 and $\Lambda_y = T_2 \mathbb{Z} + B$

• Distribution of Λ



• For any $\lambda = (\lambda_1, \lambda_2) \in \Lambda$, there are $k, m, n \in \mathbb{Z}$, $a \in A$ and $b \in B$ such that

$$\begin{cases} \lambda_2 - \lambda_1 = \frac{k}{2t+1} \\ \lambda_1 = mT_1 + a \\ \lambda_2 = nT_2 + b \end{cases}$$

• For any $\lambda = (\lambda_1, \lambda_2) \in \Lambda$, there are $k, m, n \in \mathbb{Z}$, $a \in A$ and $b \in B$ such that

$$\begin{cases} \lambda_2 - \lambda_1 = \frac{k}{2t+1} \\ \lambda_1 = mT_1 + a \\ \lambda_2 = nT_2 + b \end{cases}$$

• $\{2\lambda_2 - 2\lambda_1\} = \{2b - 2a\} = \{\frac{2k}{2t+1}\}$, where $\{\cdot\}$ denotes fractional part

• For any $\lambda = (\lambda_1, \lambda_2) \in \Lambda$, there are $k, m, n \in \mathbb{Z}$, $a \in A$ and $b \in B$ such that

$$\begin{cases} \lambda_2 - \lambda_1 = \frac{k}{2t+1} \\ \lambda_1 = mT_1 + a \\ \lambda_2 = nT_2 + b \end{cases}$$

- $\{2\lambda_2 2\lambda_1\} = \{2b 2a\} = \{\frac{2k}{2t+1}\}$, where $\{\cdot\}$ denotes fractional part
- $\begin{cases} \{2b-2a\} & \text{finitely many values} \\ \{\frac{2k}{2t+1}\} & \text{all values are different since } t \text{ is irrational} \end{cases}$
 - \Longrightarrow Contradiction

SAML

• In summary, if $t \neq -\frac{1}{2}$, then ρ is a spectral measure $\iff t \in \frac{\mathbb{Z}}{2}$.

SAML

- In summary, if $t \neq -\frac{1}{2}$, then ρ is a spectral measure $\iff t \in \frac{\mathbb{Z}}{2}$.
- Lu(2025); Kolountzakis and Lai(2025)] If $t = -\frac{1}{2}$ (Plus type), then ρ is not a spectral measure.

SAML

- In summary, if $t \neq -\frac{1}{2}$, then ρ is a spectral measure $\iff t \in \frac{\mathbb{Z}}{2}$.
- Lu(2025); Kolountzakis and Lai(2025)] If $t = -\frac{1}{2}$ (Plus type), then ρ is not a spectral measure.

Th 3. [Lai, Liu and Prince (2021); Ai, Lu and Zhou (2023); Kolountzakis, Wu(2025); Lu(2025); Kolountzakis and Lai(2025)] If ρ is SAML, then ρ is a spectral measure $\iff t \in \frac{\mathbb{Z}}{2} \setminus \{-\frac{1}{2}\}.$

In this case, ρ has a unique spectrum of the form

$$\Lambda = \{(\lambda, -\lambda) : \lambda \in \Lambda_0\},\$$

where Λ_0 is the spectrum of the Lebesgue measure supported on $[-t-1,-t]\cup [t,t+1]$.

L: a straight line through the origin

u: a unit vector along L

 u^{\perp} : the orthogonal subspace to L.

 π_L : the orthogonal projection onto line L

$$\pi_L(v) = t \text{ for any } v \in tu + u^{\perp}$$

 ρ : a Borel measure on \mathbb{R}^2

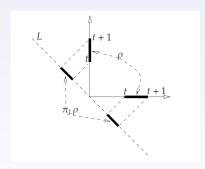
 $\pi_L \rho$: a projection measure on \mathbb{R}

$$\pi_L \rho(E) = \rho(Eu + u^{\perp}), \ E \subseteq \mathbb{R}$$

For example:

- $\bullet L: y = -x$
- $Supp(\pi_L \rho)$

$$= \frac{1}{\sqrt{2}} \left((-(t+1), -t) \cup (t, t+1) \right)$$



Th 3. [M. Kolountzakis, S. Wu(2025)] If

- (1) ρ is a probability measure on \mathbb{R}^2 whose support is a finite union of line segments;
- (2) L is a straight line through the origin such that the orthogonal projection π_L onto L is one-to-one ρ -almost everywhere.

Then ρ has a spectrum $\Lambda u \subseteq L \iff \pi_L \rho$ has spectrum $\Lambda \subseteq \mathbb{R}$, where u is a unit vector along L.

Th 3. [M. Kolountzakis, S. Wu(2025)] If

- (1) ρ is a probability measure on \mathbb{R}^2 whose support is a finite union of line segments;
- (2) L is a straight line through the origin such that the orthogonal projection π_L onto L is one-to-one ρ -almost everywhere.

Then ρ has a spectrum $\Lambda u \subseteq L \iff \pi_L \rho$ has spectrum $\Lambda \subseteq \mathbb{R}$, where u is a unit vector along L.

Proof: Any function f(x) on $supp \rho$ can be written as

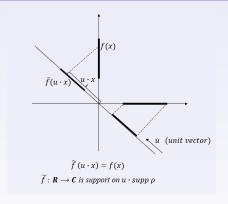
$$f(x) = \widetilde{f}(u \cdot x)$$
 for ρ – almost all x ,

where $\widetilde{f}: \mathbb{R} \to \mathbb{C}$ is supported on $u \cdot \operatorname{supp} \rho$.

$$\bullet \parallel f \parallel_{L^2(\rho)} = \parallel \widetilde{f} \parallel_{L^2(\pi_L \rho)}$$

•
$$e^{2\pi i\lambda u \cdot x} = e^{2\pi i\lambda(u \cdot x)}$$

= $e^{2\pi i\lambda \cdot \pi_L(x)}$



$$||f||_{L^{2}(\rho)}^{2} = \sum_{\lambda \in \Lambda u} \left| \langle f, e_{\lambda} \rangle_{L^{2}(\rho)} \right|^{2}$$

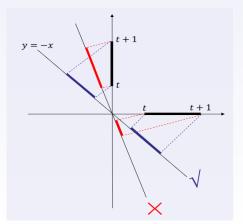
$$\updownarrow$$

$$||\widetilde{f}||_{L^{2}(\pi_{L}\rho)}^{2} = \sum_{\lambda \in \Lambda} \left| \langle \widetilde{f}, e_{\lambda} \rangle_{L^{2}(\pi_{L}\rho)} \right|^{2}$$

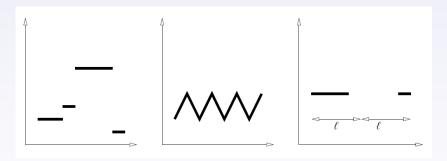
Th D. [Dutkay and Lai (2014)] If an absolutely continuous measure μ on \mathbb{R}^d is a spectral, then it is a constant multiple of Lebesgue measure on its support.

Th D. [Dutkay and Lai (2014)] If an absolutely continuous measure μ on \mathbb{R}^d is a spectral, then it is a constant multiple of Lebesgue measure on its support.

For example



For example



These measures all have a spectrum contained in the x-axis

Thanks!