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Classical example: L?([0, 1]) has an orthogonal basis {e?™A*} _—

i.e., for any f € L2([0,1])

f(z) = ZC)\(f)e)\(x‘), with ey (z) = 2™

AEZ

where ¢y (f) = fol f(x)e 2™ dg,
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Classical example: L?([0,1]) has an orthogonal basis {e } AeZ

i.e., for any f € L2([0,1])

f(z) = ZC)\(f)e)\(x‘), with ey (z) = 2™

AEZ
where ¢y (f) = fol f(x)e 2™ gy,

Basic problem: Whether 3 A s.t. Ej := {ezﬂ)""”}AeA forms an

orthogonal basis of L?(j)?
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Classical example: L?(]0, 1]) has an orthogonal basis {62”)‘“ } AeZ

i.e., for any f € L%([0,1))

f(z) = ZCA(f)e)\(x), with ey (z) = 2™

AEZ
where ¢y (f) = fol f(x)e 2™ gy,

Basic problem: Whether 3 A s.t. Ej := {ezﬂi)‘"”}AeA forms an
orthogonal basis of L?(j)?

Definition 1. Let 1 be a Borel probability measure on R%. The
measure y is called spectral if there exists a countable set A C R?
such that E, forms an orthogonal basis for L?(x). In this case,

we call A a spectrum of .
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Jorgensen and Pedersen(1998) First singular spectral mea-

sure

1 ! Cant
A= Cantor 3~ Ltantor

Spectral Not spectral

A= {Z?:o‘ljaj ta; € {0,1}, k> 1}
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He, Lai and Lau(2013) Spectral measure p must be of pure
type.

e Discrete (finite support), or
e Absolutely continuous, or

e Singularly continuous.
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Definition 2. We say () is a spectral set if spectral measure p is
the Lebesgue measure restricted on the set . Usually, we take
the measure of 2 to be 1.
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Definition 2. We say ) is a spectral set if spectral measure p is
the Lebesgue measure restricted on the set . Usually, we take

the measure of Q) to be 1.

4

Definition 3. The set § is said to tile R? by translations if there
exists a discrete set L C R? such that

U@+ =R? and m((Q+1)N(Q+12)) =0 for all Iy # 15 € L,
leL

where m(-) denotes the Lebesgue measure.
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For example

e Q) =10,1]
e T T T T . N T
_2, - : - 1: "-s+2 =
."[{’I Lﬂl L,l-'ﬂq._‘/‘.\j ~a \\_‘

where T=A =7
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QO+ 1T =R?
27, 27, + 1
here Ty = Ay =Z2 and Ty, = Ay =
where T} — Ay 2 Q(Z)U(M>
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Fuglede Conjecture(1974): 2 C R? is a spectral set if and
only if it tiles R¢ by translation.
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Fuglede Conjecture(1974): Q C R? is a spectral set if and
only if it tiles R¢ by translation.

Spectral Tile

v v

o)rR
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Counterexamples
e d > 3, non-tiling spectral set
e d > 5 (Tao, 2004)

o d = 3,4 (Matolcsi, 2004; Kolountzakis and Matolcsi, 2004)
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Counterexamples
e d > 3, non-tiling spectral set

e d > 5 (Tao, 2004)

e d = 3,4 (Matolcsi, 2004; Kolountzakis and Matolcsi, 2004)
e d > 3, tiling not-spectral set

e d > 5, (Kolountzakis and Matolcsi, 2004 )

e d = 3,4, (Farkas and Révész, 2004; Farkas, Matolcsi and
Mora, 2005).
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e d = 1,2, conjecture still open in both directions
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e d = 1,2, conjecture still open in both directions

Positive
e Lattice tile (Fuglede 1974)
e Convex body (Lev and Matolcsi 2022)

e Some cyclic group, for example, Zpn, Zy X Zun, 22 X L2 - --
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e Fuglede Conjecture holds for an interval.

Question: Does Fuglede Conjecture hold for the union of two
intervals?
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Th A. [Laba, 2001] Let Q@ C R be a union of two disjointJ

intervals. Then €2 has a spectrum <= it tiles R by translations.
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Th A. [Laba, 2001] Let & C R be a union of two disjoint
intervals. Then €2 has a spectrum <= it tiles R by translations.

Essentially all that can happen is this:

(1) a V4 1-a
| | ||
| \ 1
I1 IZ

or

1 1 1

i _Z —
(2) 2 2 2

1 | 1

I \ W \
I3 Iy
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For example Q = [—(t+ 1), —t]U[¢t,t + 1] (¢t > 0)

1 1
—— , ——
—(t+1) -t 0 t t+1
spectral < tile <t € % J

Sha Wu/Spectral problem of two line segments 14/ 40



Rotate the left interval to the y-axis. We are seeking a spectrum

for singular measure in R2.

t+1

-~

0 t t+1
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Rotate the left interval to the y-axis. We are seeking a spectrum

for singular measure in R2.

t+1

-~

When is it a spectral measure?

0 t t+1
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Definition 4. Let p be a continuous Borel probability measure
on R. The symmetric additive measure (SAM) p on R? is given
by

p= %(ux&o—i-éo X ),

where Jp is the Dirac measure at 0. If p is a Lebesgue measure

supported on a unit interval, we call p SAML.
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Definition 4. Let p be a continuous Borel probability measure
on R. The symmetric additive measure (SAM) p on R? is given
by
1
p= 5(/,L><50+(50 X ),
where Jp is the Dirac measure at 0. If p is a Lebesgue measure

supported on a unit interval, we call p SAML.

t+1

0 t t+1
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Definition 4. Let p be a continuous Borel probability measure
on R. The symmetric additive measure (SAM) p on R? is given
by

p= %(ux&o—i-éo X ),

where Jp is the Dirac measure at 0. If p is a Lebesgue measure

supported on a unit interval, we call p SAML.

v

t+1

When is SAML a spectral measure?J

0 t t+1
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1

By the symmetry, we consider only the cases t > —

5
0 0

t= ! 1

=73 _E<t<0

0 0

t=0 o<t
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Th B. [Lai, Liu and Prince (2021); Ai, Lu and Zhou
(2023)] Let p be SAML, then the following two statements hold:

(1). If =3 <t <0and 2t+1 =1 where a > 1 is a positive
integer, then p is not spectral.

(2). If t € Q\ {—3}, then p is a spectral measure <= t € %.

In this case, p has a unique spectrum of the form
A={(A—X): X €A},

where Ag is the spectrum of the Lebesgue measure supported on
[—t —1,—t] U [t, ¢t + 1].
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Our goal is to prove

(1).When —3 <t < 0, p is not a spectral measure.

(2).When t ¢ Q, p is not a spectral measure.
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Lem 1. Let p be SAMLL. If t # —% and p is spectral with
spectrum 0 € A C R2, then for every A = (A1, A\2) € A there
exists an integer k() such that

Aa— A\ = —F.
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Lem 1. Let p be SAMLL. If t # —% and p is spectral with
spectrum 0 € A C R2, then for every A = (A1, A\2) € A there
exists an integer k() such that

/
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Lem 1. Let p be SAMLL. If t # —% and p is spectral with
spectrum 0 € A C R2, then for every A = (A1, A\2) € A there
exists an integer k() such that

k(\)
2t +1°
Proof :

A2 — A1 =

k=-1
/ e e For any \; # Ao € A,

2
k=3
// O _ <e2ﬂ'iA1w, 627T7/A2x>L2(p)
/ = [y — oy - x)

Hk o AN{0} C(A-M)\ {0}
G C {z: p(x) = 0}
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e Zeros set of p

:p(\) =0} = mia—do)(2t+1) SIDTAL _ sinTAg
{A:p(\) =0} {(Al,Ag).e - Y

e So the exponential factor must be real, for vanishing, which

gives

1
AC {()\1,)\2) DAy — A € 2t+1Z}
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Th 1. [M. Kolountzakis, S. Wu(2025)] Let p be SAML. If
—% < t <0, then p is not spectral.
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Th 1. [M. Kolountzakis, S. Wu(2025)] Let p be SAML. If
—% <t < 0, then p is not spectral.

Proof: (By contradiction) Suppose 0 € A is a spectrum.

(1). f(2) E Sacalfrexder(@) for any f € L2(p)
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Th 1. [M. Kolountzakis, S. Wu(2025)] Let p be SAML. If
—% <t < 0, then p is not spectral.

Proof: (By contradiction) Suppose 0 € A is a spectrum.
L2
(1) £@) £ Trealfrenea@) for any £ € L2(p)

@). f(z+T) Z f(z), where T = (2t +1,—2¢ — 1) (By Lemma 1)
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Th 1. [M. Kolountzakis, S. Wu(2025)] Let p be SAML. If
—% <t < 0, then p is not spectral.

Proof: (By contradiction) Suppose 0 € A is a spectrum.
L2
(1) £@) £ Trealfrenea@) for any £ € L2(p)
@). f(z+T) Z f(z), where T = (2t +1,—2¢ — 1) (By Lemma 1)

x= (0,2t +1)

N x+T=(2t+1,0)

—1/2<t<0
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(3). Construct a function f(x) € L?(p) s.t. for all z € supp(p)

Flz) TEE T ealf enea(@)

f(.’L‘ —|—T) Poi@wise f(fL‘)
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(3). Construct a function f(x) € L?(p) s.t. for all z € supp(p)

Flz) TEE T ealf enea(@)

f(.’L‘ —|—T) Poin:twise f(l')

e Vertical segment 0

f(0,y)=0for all y e R -
e Horizontal segment 1
T
f2t+1,0)=1 S
smooth function ; i+2tl+t
support close to (1 + 2t,0) '
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= Y ,ea l{f,ex)] < oo for all z € R? (from smoothness)

= 1= f(2t+1,0) = f(0,2t + 1) = 0, contradiction!
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Th 2. [M. Kolountzakis, S. Wu(2025)] Let p be SAML. If
t ¢ Q, then p is not spectral.
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Th 2. [M. Kolountzakis, S. Wu(2025)] Let p be SAML. If
t ¢ Q, then p is not spectral.

Proof: (By contradiction) Suppose 0 € A is a spectrum.
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Th 2. [M. Kolountzakis, S. Wu(2025)] Let p be SAML. If
t ¢ Q, then p is not spectral.

Proof: (By contradiction) Suppose 0 € A is a spectrum.

Lem 2. (1). On each line of the form

k

= %1 for some k € Z,

y—

there is at most one point of A.
(2). There is a constant K > 1 such that

KA1] < Ae] € K|\

for all A = (A1, \2) € A.
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J

26/ 40

[Lai, Liu and Prince (2021)] At most one point on

any vertical or horizontal line through A.

Remark.
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Lem 3. Let A, Ay be the projections of A on the z,y — axis.

We have
=Y I s gP@—2) and 2= > 11 @ = N).
AEA, AEA,

In this case, we call |1 |2+ A, a tiling of R at level 2.

=11
32
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Lem 3. Let A, Ay be the projections of A on the z,y — axis.

We have
=Y I s gP@—2) and 2= > 11 @ = N).
AEA, AEA,

In this case, we call |1 2 + A, a tiling of R at level 2.

_1 ]
22

Proof :

9 0
o [l fllz2(0) = 2oren ‘(fa €A>L2(p)‘ /

@(x) = 1417 (x)e

0, z=0 f
.f($>y):
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Lem 4. There are finitely many different gaps among successive

points in A, and A,. In this case, we call A,, A, finite complexity.
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Lem 4. There are finitely many different gaps among successiveJ

points in A, and A,. In this case, we call A,, A, finite complexity.

Proof :

e Only need to consider A,.
Writing the set A, = {A] : n € Z} with
AP =0 <N <
and A = {\" = (A\!,\}) :n € Z}
APt

To prove the set { — Al }nez finitely many different elements.
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e By the tiling property (Lem-

ma 3), there is a constant C' such
that A\} < C

e M\ lives in the union of these

two angles

Sha Wu/Spectral problem of two line segments

A lives in the union
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e By the tiling property (Lem-

ma 3), there is a constant C' such
that A\} < C

e M\ lives in the union of these

two angles

e Translate A by —A", we have

A lives in the union
of these two angles

AL _ A" lives again in the union of these two angles
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e By the tiling property (Lem-

ma 3), there is a constant C' such
that A\} < C

e M\ lives in the union of these

two angles

e Translate A by —A", we have

An-i-l

A lives in the union
of these two angles

— A" lives again in the union of these two angles

e On each blue line, the zeros of p are a discrete set

= {\""!1 — A7),z can take only finitely many values.
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Th C. | Kolountzakis and Lev(2016)] If
(1). f+ A is a tiling of R at some level .

(2). A has finite complexity and spectral gap.

Then A = A + T for some positive 7' € R. In other words, A is

periodic set.
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Th C. | Kolountzakis and Lev(2016)] If
(1). f+ A is a tiling of R at some level .

(2). A has finite complexity and spectral gap.
Then A = A + T for some positive 7' € R. In other words, A is

periodic set.

Combining Lemmas 3 and 4 with Theorem C, we have

Lem 5. There are positive 11,15 € %Z and some finite sets
A C0,71) and B C [0,T%) such that

Ap=T7Z+A and A,=TZ+B
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e Distribution of A

-— k=—1
k=0
e k=1
Ay =T,Z+B

K
(@.T,, T,elz y=xtora

(b). Ac [0, Ty),B c [0, T,) are finite sets
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e For any A = (A, \2) € A, there are k,m,n € Z, a € A and
b € B such that

Xy — A1 = 5t
A =mT1+a
A =nT5+b
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e For any A = (A, \2) € A, there are k,m,n € Z, a € A and
b € B such that
Ao — A =

2t+1
A =mT1+a
A =nT5+b

o {2X 2 —2)\1} ={20—2a} = {2t+1 where {-} denotes fractional
part

Sha Wu/Spectral problem of two line segments 32/ 40



e For any A = (A, \2) € A, there are k,m,n € Z, a € A and
b € B such that

Az — A1 = 2t+1
A =mT1+a
A =nT5+b

o {2X 2 —2)\1} ={20—2a} = {2t+1 where {-} denotes fractional
part

{2b — 2a} finitely many values

{2 7+ all values are different since ¢ is irrational

— Contradiction
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e In summary, if ¢ # —%, then p is a spectral measure <=t € %.
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e In summary, if ¢ # —%, then p is a spectral measure <=t € %.

e Lu(2025); Kolountzakis and Lai(2025)] If t = —1 (Plus

type), then p is not a spectral measure.
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e In summary, if ¢ # —%, then p is a spectral measure <=t € %.

e Lu(2025); Kolountzakis and Lai(2025)] If t = —1 (Plus

type), then p is not a spectral measure.

Th 3. [Lai, Liu and Prince (2021); Ai, Lu and Zhou
(2023); Kolountzakis, Wu(2025); Lu(2025); Kolountza-
kis and Lai(2025)] If p is SAML, then p is a spectral measure
—=tei\{-i}

In this case, p has a unique spectrum of the form
A={(A\,=N): A€ Ao},

where Ag is the spectrum of the Lebesgue measure supported on
[-t—1,—t]U[t, t+1].
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L : a straight line through the origin
u : a unit vector along L
u' : the orthogonal subspace to L.

nr, . the orthogonal projection onto line L

mr(v) =t for any v € tu+ ut

p : a Borel measure on R?

mrp : a projection measure on R
1p(E) = p(Bu+ut), ECR
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For example:

ol :y=—x

o Supp(mrp)

= 5 (=t +1), - U (t,t+1)
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Th 3. [M. Kolountzakis, S. Wu(2025)] If

(1) p is a probability measure on R? whose support is a finite
union of line segments;

(2) L is a straight line through the origin such that the or-

thogonal projection 77, onto L is one-to-one p-almost everywhere.

Then p has a spectrum Au C L <= 7pp has spectrum A C R,

where u is a unit vector along L.
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Th 3. [M. Kolountzakis, S. Wu(2025)] If

(1) p is a probability measure on R? whose support is a finite
union of line segments;

(2) L is a straight line through the origin such that the or-
thogonal projection 77, onto L is one-to-one p-almost everywhere.

Then p has a spectrum Au C L <= 7pp has spectrum A C R,

where u is a unit vector along L.

Proof : Any function f(x) on suppp can be written as
f(z) = f(u-z) for p— almost all z,
where f: R — C is supported on w - suppp.
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e
o | Fllz=Il f llz2(rrp) N
u-x
o e2midu-x _ 2miA(u-x)
— 2miAmy (z) -\u (unit vector)
Fluxy=1(x

f: R — C is support on u - supp p

[ ]

11220y = D [(Frex)zzgp)”

AEAu

(3
||}’V||%2(mp) = Z ’(f, eX) L2 (rLp) ’2

AEA
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Th D. [Dutkay and Lai (2014)] If an absolutely continuous
measure p on R? is a spectral, then it is a constant multiple of

Lebesgue measure on its support.
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Th D. [Dutkay and Lai (2014)] If an absolutely continuous
measure p on R? is a spectral, then it is a constant multiple of

Lebesgue measure on its support.

For example

y=—x At+1

t+1

X
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For example

_- NW T

These measures all have a spectrum contained in the z-axis
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Thanks!
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