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Background

Classical example: 𝐿2([0, 1]) has an orthogonal basis
{︀
𝑒2𝜋𝑖𝜆·𝑥

}︀
𝜆∈Z,

i.e., for any 𝑓 ∈ 𝐿2([0, 1])

𝑓(𝑥) =
∑︁
𝜆∈Z

𝑐𝜆(𝑓)𝑒𝜆(𝑥), with 𝑒𝜆(𝑥) = 𝑒2𝜋𝑖𝜆·𝑥,

where 𝑐𝜆(𝑓) =
∫︀ 1
0 𝑓(𝑥)𝑒−2𝜋𝑖𝜆·𝑥 𝑑𝑥.

Basic problem: Whether ∃ Λ s.t. 𝐸Λ :=
{︀
𝑒2𝜋𝑖𝜆·𝑥

}︀
𝜆∈Λ forms an

orthogonal basis of 𝐿2(𝜇)?

Definition 1. Let 𝜇 be a Borel probability measure on R𝑑. The

measure 𝜇 is called spectral if there exists a countable set Λ ⊂ R𝑑

such that 𝐸Λ forms an orthogonal basis for 𝐿2(𝜇). In this case,

we call Λ a spectrum of 𝜇.

Sha Wu/Spectral problem of two line segments 3 / 40



Background

Classical example: 𝐿2([0, 1]) has an orthogonal basis
{︀
𝑒2𝜋𝑖𝜆·𝑥

}︀
𝜆∈Z,

i.e., for any 𝑓 ∈ 𝐿2([0, 1])

𝑓(𝑥) =
∑︁
𝜆∈Z

𝑐𝜆(𝑓)𝑒𝜆(𝑥), with 𝑒𝜆(𝑥) = 𝑒2𝜋𝑖𝜆·𝑥,

where 𝑐𝜆(𝑓) =
∫︀ 1
0 𝑓(𝑥)𝑒−2𝜋𝑖𝜆·𝑥 𝑑𝑥.

Basic problem: Whether ∃ Λ s.t. 𝐸Λ :=
{︀
𝑒2𝜋𝑖𝜆·𝑥

}︀
𝜆∈Λ forms an

orthogonal basis of 𝐿2(𝜇)?

Definition 1. Let 𝜇 be a Borel probability measure on R𝑑. The

measure 𝜇 is called spectral if there exists a countable set Λ ⊂ R𝑑

such that 𝐸Λ forms an orthogonal basis for 𝐿2(𝜇). In this case,

we call Λ a spectrum of 𝜇.

Sha Wu/Spectral problem of two line segments 3 / 40



Background

Classical example: 𝐿2([0, 1]) has an orthogonal basis
{︀
𝑒2𝜋𝑖𝜆·𝑥

}︀
𝜆∈Z,

i.e., for any 𝑓 ∈ 𝐿2([0, 1])

𝑓(𝑥) =
∑︁
𝜆∈Z

𝑐𝜆(𝑓)𝑒𝜆(𝑥), with 𝑒𝜆(𝑥) = 𝑒2𝜋𝑖𝜆·𝑥,

where 𝑐𝜆(𝑓) =
∫︀ 1
0 𝑓(𝑥)𝑒−2𝜋𝑖𝜆·𝑥 𝑑𝑥.

Basic problem: Whether ∃ Λ s.t. 𝐸Λ :=
{︀
𝑒2𝜋𝑖𝜆·𝑥

}︀
𝜆∈Λ forms an

orthogonal basis of 𝐿2(𝜇)?

Definition 1. Let 𝜇 be a Borel probability measure on R𝑑. The

measure 𝜇 is called spectral if there exists a countable set Λ ⊂ R𝑑

such that 𝐸Λ forms an orthogonal basis for 𝐿2(𝜇). In this case,

we call Λ a spectrum of 𝜇.

Sha Wu/Spectral problem of two line segments 3 / 40



Background

Jorgensen and Pedersen(1998) First singular spectral mea-

sure

Λ =
{︁∑︀𝑘

𝑗=0 4𝑗𝑎𝑗 : 𝑎𝑗 ∈ {0, 1}, 𝑘 ≥ 1
}︁
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Background

He, Lai and Lau(2013) Spectral measure 𝜇 must be of pure

type.

∙ Discrete (finite support), or

∙ Absolutely continuous, or

∙ Singularly continuous.
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Spectral set and tiling by translations

Definition 2. We say Ω is a spectral set if spectral measure 𝜇 is

the Lebesgue measure restricted on the set Ω. Usually, we take

the measure of Ω to be 1.

Definition 3. The set Ω is said to tile R𝑑 by translations if there

exists a discrete set 𝐿 ⊂ R𝑑 such that⋃︁
𝑙∈𝐿

(Ω+𝑙) = R𝑑 and 𝑚((Ω+𝑙1)∩(Ω+𝑙2)) = 0 for all 𝑙1 ̸= 𝑙2 ∈ 𝐿,

where 𝑚(·) denotes the Lebesgue measure.
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Spectral set and tiling by translations

For example

∙ Ω = [0, 1]

Ω + 𝑇 = R

where 𝑇 = Λ = Z
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Spectral set and tiling by translations

∙ Ω = [0, 1]2

Ω + 𝑇1 = R2 Ω + 𝑇2 = R2

where 𝑇1 = Λ1 = Z2 and 𝑇2 = Λ2 =

(︃
2Z
Z

)︃⋃︀(︃2Z + 1
1
2 + Z

)︃
Sha Wu/Spectral problem of two line segments 8 / 40



Fuglede Conjecture

Fuglede Conjecture(1974): Ω ⊂ R𝑑 is a spectral set if and

only if it tiles R𝑑 by translation.
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Fuglede Conjecture

Counterexamples

∙ 𝑑 ≥ 3, non-tiling spectral set

∙ 𝑑 ≥ 5 (Tao, 2004)

∙ 𝑑 = 3, 4 (Matolcsi, 2004; Kolountzakis and Matolcsi, 2004)

∙ 𝑑 ≥ 3, tiling not-spectral set

∙ 𝑑 ≥ 5, (Kolountzakis and Matolcsi, 2004 )

∙ 𝑑 = 3, 4, (Farkas and Révész, 2004; Farkas, Matolcsi and

Móra, 2005).
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Fuglede Conjecture

∙ 𝑑 = 1, 2, conjecture still open in both directions

Positive

∙ Lattice tile (Fuglede 1974)

∙ Convex body (Lev and Matolcsi 2022)

∙ Some cyclic group, for example, Z𝑝𝑛 ,Z𝑝 × Z𝑝𝑛 ,Z2
𝑝 × Z2

𝑞 · · ·
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Two line segments

∙ Fuglede Conjecture holds for an interval.

Question: Does Fuglede Conjecture hold for the union of two

intervals?
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Two line segments

Th A. [ Laba, 2001] Let Ω ⊂ R be a union of two disjoint

intervals. Then Ω has a spectrum ⇐⇒ it tiles R by translations.

Essentially all that can happen is this:
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Two line segments

For example Ω = [−(𝑡 + 1),−𝑡] ∪ [𝑡, 𝑡 + 1] (𝑡 ≥ 0)

spectral ⇐⇒ tile ⇐⇒ 𝑡 ∈ Z
2
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Two line segments

Rotate the left interval to the y-axis. We are seeking a spectrum

for singular measure in R2.

When is it a spectral measure?
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Symmetric additive measures

Definition 4. Let 𝜇 be a continuous Borel probability measure

on R. The symmetric additive measure (SAM) 𝜌 on R2 is given

by

𝜌 =
1

2
(𝜇× 𝛿0 + 𝛿0 × 𝜇),

where 𝛿0 is the Dirac measure at 0. If 𝜇 is a Lebesgue measure

supported on a unit interval, we call 𝜌 SAML.

When is SAML a spectral measure?
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SAML

By the symmetry, we consider only the cases 𝑡 ≥ −1
2 .
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SAML

Th B. [Lai, Liu and Prince (2021); Ai, Lu and Zhou

(2023)] Let 𝜌 be SAML, then the following two statements hold:

(1). If −1
2 < 𝑡 < 0 and 2𝑡 + 1 = 1

𝑎 , where 𝑎 > 1 is a positive

integer, then 𝜌 is not spectral.

(2). If 𝑡 ∈ Q ∖ {−1
2}, then 𝜌 is a spectral measure ⇐⇒ 𝑡 ∈ Z

2 .

In this case, 𝜌 has a unique spectrum of the form

Λ = {(𝜆,−𝜆) : 𝜆 ∈ Λ0},

where Λ0 is the spectrum of the Lebesgue measure supported on

[−𝑡− 1,−𝑡] ∪ [𝑡, 𝑡 + 1].
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SAML

Our goal is to prove⎧⎪⎨⎪⎩
(1).When −1

2 < 𝑡 < 0, 𝜌 is not a spectral measure.

(2).When 𝑡 /∈ Q, 𝜌 is not a spectral measure.
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SAML

Lem 1. Let 𝜌 be SAML. If 𝑡 ̸= −1
2 and 𝜌 is spectral with

spectrum 0 ∈ Λ ⊆ R2, then for every 𝜆 = (𝜆1, 𝜆2) ∈ Λ there

exists an integer 𝑘(𝜆) such that

𝜆2 − 𝜆1 =
𝑘(𝜆)

2𝑡 + 1
.

Proof :

∙ For any 𝜆1 ̸= 𝜆2 ∈ Λ,

0 = ⟨𝑒2𝜋𝑖𝜆1𝑥, 𝑒2𝜋𝑖𝜆2𝑥⟩𝐿2(𝜌)

=

∫︁
𝑒2𝜋𝑖(𝜆1−𝜆2)𝑥𝑑𝜌 = 𝜌(𝜆2 − 𝜆1)

∙ Λ ∖ {0} ⊂ (Λ − Λ) ∖ {0}

⊂ {𝑥 : 𝜌(𝑥) = 0}
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Proof of Lem 1

∙ Zeros set of 𝜌

{𝜆 : 𝜌(𝜆) = 0} =

{︂
(𝜆1, 𝜆2) : 𝑒𝜋𝑖(𝜆1−𝜆2)(2𝑡+1) sin𝜋𝜆1

𝜋𝜆1
= −sin𝜋𝜆2

𝜋𝜆2

}︂

∙ So the exponential factor must be real, for vanishing, which

gives

Λ ⊂
{︂

(𝜆1, 𝜆2) : 𝜆2 − 𝜆1 ∈
1

2𝑡 + 1
Z
}︂
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Intersecting case

Th 1. [M. Kolountzakis, S. Wu(2025)] Let 𝜌 be SAML. If

−1
2 < 𝑡 < 0, then 𝜌 is not spectral.

Proof: (By contradiction) Suppose 0 ∈ Λ is a spectrum.

(1). 𝑓(𝑥)
𝐿2

=
∑︀

𝜆∈Λ⟨𝑓, 𝑒𝜆⟩𝑒𝜆(𝑥) for any 𝑓 ∈ 𝐿2(𝜌)

(2). 𝑓(𝑥+𝑇 )
𝐿2

= 𝑓(𝑥), where 𝑇 = (2𝑡+ 1,−2𝑡− 1) (By Lemma 1)
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Proof of Theorem 1

(3). Construct a function 𝑓(𝑥) ∈ 𝐿2(𝜌) s.t. for all 𝑥 ∈ 𝑠𝑢𝑝𝑝(𝜌)⎧⎪⎨⎪⎩
𝑓(𝑥)

𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒
=

∑︀
𝜆∈Λ⟨𝑓, 𝑒𝜆⟩𝑒𝜆(𝑥)

𝑓(𝑥 + 𝑇 )
𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒

= 𝑓(𝑥)

∙ Vertical segment 0

𝑓(0, 𝑦) = 0 for all 𝑦 ∈ R

∙ Horizontal segment⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓(2𝑡 + 1, 0) = 1

𝑠𝑚𝑜𝑜𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 (1 + 2𝑡, 0)
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Proof of Theorem 1

=⇒
∑︀

𝜆∈Λ |⟨𝑓, 𝑒𝜆⟩| < ∞ for all 𝑥 ∈ R2 (from smoothness)

=⇒ 1 = 𝑓(2𝑡 + 1, 0) = 𝑓(0, 2𝑡 + 1) = 0, contradiction!
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Case of irrational 𝑡

Th 2. [M. Kolountzakis, S. Wu(2025)] Let 𝜌 be SAML. If

𝑡 /∈ Q, then 𝜌 is not spectral.

Proof: (By contradiction) Suppose 0 ∈ Λ is a spectrum.

Lem 2. (1). On each line of the form

𝑦 − 𝑥 =
𝑘

2𝑡 + 1
for some 𝑘 ∈ Z,

there is at most one point of Λ.

(2). There is a constant 𝐾 > 1 such that

𝐾−1|𝜆1| ≤ |𝜆2| ≤ 𝐾|𝜆1|

for all 𝜆 = (𝜆1, 𝜆2) ∈ Λ.
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Proof of Theorem 2

Remark. [Lai, Liu and Prince (2021)] At most one point on

any vertical or horizontal line through Λ.
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Proof of Theorem 2

Lem 3. Let Λ𝑥, Λ𝑦 be the projections of Λ on the 𝑥, 𝑦 − 𝑎𝑥𝑖𝑠.

We have

2 =
∑︁
𝜆∈Λ𝑥

|1̂[− 1
2
, 1
2
]|
2(𝑥− 𝜆) and 2 =

∑︁
𝜆∈Λ𝑦

|1̂[− 1
2
, 1
2
]|
2(𝑥− 𝜆).

In this case, we call |1̂[− 1
2
, 1
2
]|2 + Λ𝑥 a tiling of R at level 2.

Proof :

∙ ‖𝑓‖𝐿2(𝜌) =
∑︀

𝜆∈Λ

⃒⃒⃒
⟨𝑓, 𝑒𝜆⟩𝐿2(𝜌)

⃒⃒⃒2

∙ 𝑓(𝑥, 𝑦) =

⎧⎨⎩0, 𝑥 = 0

𝜙(𝑥), 𝑦 = 0
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Proof of Theorem 2

Lem 4. There are finitely many different gaps among successive

points in Λ𝑥 and Λ𝑦. In this case, we call Λ𝑥, Λ𝑦 finite complexity.

Proof :

∙ Only need to consider Λ𝑥.

Writing the set Λ𝑥 = {𝜆𝑛
1 : 𝑛 ∈ Z} with

· · · ≤ 𝜆−1
1 ≤ 𝜆0

1 = 0 ≤ 𝜆1
1 ≤ 𝜆2

1 < · · ·

and Λ = {𝜆𝑛 = (𝜆𝑛
1 , 𝜆

𝑛
2 ) : 𝑛 ∈ Z}

To prove the set {𝜆𝑛+1
1 −𝜆𝑛

1}𝑛∈Z finitely many different elements.
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Proof of Theorem 2

∙ By the tiling property (Lem-

ma 3), there is a constant 𝐶 such

that 𝜆1
1 < 𝐶

∙ 𝜆1 lives in the union of these

two angles

∙ Translate Λ by −𝜆𝑛, we have

𝜆𝑛+1 − 𝜆𝑛 lives again in the union of these two angles

∙ On each blue line, the zeros of 𝜌 are a discrete set

=⇒ {𝜆𝑛+1
1 − 𝜆𝑛

1}𝑛∈Z can take only finitely many values.
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Proof of Theorem 2

Th C. [ Kolountzakis and Lev(2016)] If

(1). 𝑓 + Λ is a tiling of R at some level 𝑙.

(2). Λ has finite complexity and spectral gap.

Then Λ = Λ + 𝑇 for some positive 𝑇 ∈ R. In other words, Λ is

periodic set.

Combining Lemmas 3 and 4 with Theorem C, we have

Lem 5. There are positive 𝑇1, 𝑇2 ∈ 1
2Z and some finite sets

𝐴 ⊆ [0, 𝑇1) and 𝐵 ⊆ [0, 𝑇2) such that

Λ𝑥 = 𝑇1Z + 𝐴 and Λ𝑦 = 𝑇2Z + 𝐵
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Proof of Theorem 2
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Proof of Theorem 2

∙ Distribution of Λ
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Proof of Theorem 2

∙ For any 𝜆 = (𝜆1, 𝜆2) ∈ Λ, there are 𝑘,𝑚, 𝑛 ∈ Z, 𝑎 ∈ 𝐴 and

𝑏 ∈ 𝐵 such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜆2 − 𝜆1 = 𝑘

2𝑡+1

𝜆1 = 𝑚𝑇1 + 𝑎

𝜆2 = 𝑛𝑇2 + 𝑏

∙ {2𝜆2−2𝜆1} = {2𝑏−2𝑎} = { 2𝑘
2𝑡+1}, where {·} denotes fractional

part

∙

⎧⎪⎨⎪⎩
{2𝑏− 2𝑎} finitely many values

{ 2𝑘
2𝑡+1} all values are different since 𝑡 is irrational

=⇒ Contradiction
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SAML

∙ In summary, if 𝑡 ̸= −1
2 , then 𝜌 is a spectral measure ⇐⇒ 𝑡 ∈ Z

2 .

∙ Lu(2025); Kolountzakis and Lai(2025)] If 𝑡 = −1
2 (Plus

type), then 𝜌 is not a spectral measure.

Th 3. [Lai, Liu and Prince (2021); Ai, Lu and Zhou

(2023); Kolountzakis, Wu(2025); Lu(2025); Kolountza-

kis and Lai(2025)] If 𝜌 is SAML, then 𝜌 is a spectral measure

⇐⇒ 𝑡 ∈ Z
2 ∖ {−1

2}.

In this case, 𝜌 has a unique spectrum of the form

Λ = {(𝜆,−𝜆) : 𝜆 ∈ Λ0},

where Λ0 is the spectrum of the Lebesgue measure supported on

[−𝑡− 1,−𝑡] ∪ [𝑡, 𝑡 + 1].
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Projection measure

𝐿 : a straight line through the origin

𝑢 : a unit vector along 𝐿

𝑢⊥ : the orthogonal subspace to 𝐿.

𝜋𝐿 : the orthogonal projection onto line 𝐿

𝜋𝐿(𝑣) = 𝑡 for any 𝑣 ∈ 𝑡𝑢 + 𝑢⊥

𝜌 : a Borel measure on R2

𝜋𝐿𝜌 : a projection measure on R

𝜋𝐿𝜌(𝐸) = 𝜌(𝐸𝑢 + 𝑢⊥), 𝐸 ⊆ R
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Projection measure

For example:

∙ 𝐿 : 𝑦 = −𝑥

∙ 𝑆𝑢𝑝𝑝(𝜋𝐿𝜌)

= 1√
2

((−(𝑡 + 1),−𝑡) ∪ (𝑡, 𝑡 + 1))
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Projection measure

Th 3. [M. Kolountzakis, S. Wu(2025)] If

(1) 𝜌 is a probability measure on R2 whose support is a finite

union of line segments;

(2) 𝐿 is a straight line through the origin such that the or-

thogonal projection 𝜋𝐿 onto 𝐿 is one-to-one 𝜌-almost everywhere.

Then 𝜌 has a spectrum Λ𝑢 ⊆ 𝐿 ⇐⇒ 𝜋𝐿𝜌 has spectrum Λ ⊆ R,

where 𝑢 is a unit vector along 𝐿.

Proof : Any function 𝑓(𝑥) on supp𝜌 can be written as

𝑓(𝑥) = ̃︀𝑓(𝑢 · 𝑥) for 𝜌− almost all 𝑥,

where ̃︀𝑓 : R → C is supported on 𝑢 · supp𝜌.
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Proof of Theorem 3

∙ ‖ 𝑓 ‖𝐿2(𝜌)=‖ ̃︀𝑓 ‖𝐿2(𝜋𝐿𝜌)

∙ 𝑒2𝜋𝑖𝜆𝑢·𝑥 = 𝑒2𝜋𝑖𝜆(𝑢·𝑥)

= 𝑒2𝜋𝑖𝜆·𝜋𝐿(𝑥)

∙
‖𝑓‖2𝐿2(𝜌) =

∑︁
𝜆∈Λ𝑢

⃒⃒
⟨𝑓, 𝑒𝜆⟩𝐿2(𝜌)

⃒⃒2
⇕

‖ ̃︀𝑓‖2𝐿2(𝜋𝐿𝜌)
=
∑︁
𝜆∈Λ

⃒⃒⃒
⟨ ̃︀𝑓, 𝑒𝜆⟩𝐿2(𝜋𝐿𝜌)

⃒⃒⃒2
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Projection measure

Th D. [Dutkay and Lai (2014)] If an absolutely continuous

measure 𝜇 on R𝑑 is a spectral, then it is a constant multiple of

Lebesgue measure on its support.

For example

Sha Wu/Spectral problem of two line segments 38 / 40



Projection measure

Th D. [Dutkay and Lai (2014)] If an absolutely continuous

measure 𝜇 on R𝑑 is a spectral, then it is a constant multiple of

Lebesgue measure on its support.

For example

Sha Wu/Spectral problem of two line segments 38 / 40



Projection measure

For example

These measures all have a spectrum contained in the 𝑥-axis
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Thanks!
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